Stroke Prevention Medications: Latest Research

Dr. R Del Grande, MD, FRCPC

Relationships with commercial interests: None Potential for conflict(s) of interest: None

Presentation Objectives:

By the end of this presentation you will be able to:

- Apply updated knowledge of stroke prevention medications to your clinical practice
- Use best practice information to inform clinical decisions around management of stroke risk factors

Vascular risk factors [% incidence]

Hypertension	50-60%
Diabetes mellitus	20-25%
Dyslipidemia	20-25%
Atrial fibrillation	10-40%

Others: CAD, Smoking, COPD, Lack of Exercise, PVD, VHD, CHF, Obesity, OAC, Alcohol excess, ICH, Previous CAD/TIA/CVA

Primary Stroke Prevention

Lifestyle, lifestyle, lifestyle

Healthy Diet, Healthy exercise, Healthy Sleep, Avoid dumb things

Hypertension

Hypertension

- 1. Dec'ing BP more important than specific drug, though ACE inhibitor or a diuretic preferred.
- 2. Target: 140/90;130/90 if DM, VD, or CV risk >10% 20% / Consider "Risk Enhancers"
- 3. If recurrent neurologic symptoms from a stenotic artery at a lowered BP, maintain BP > that threshold

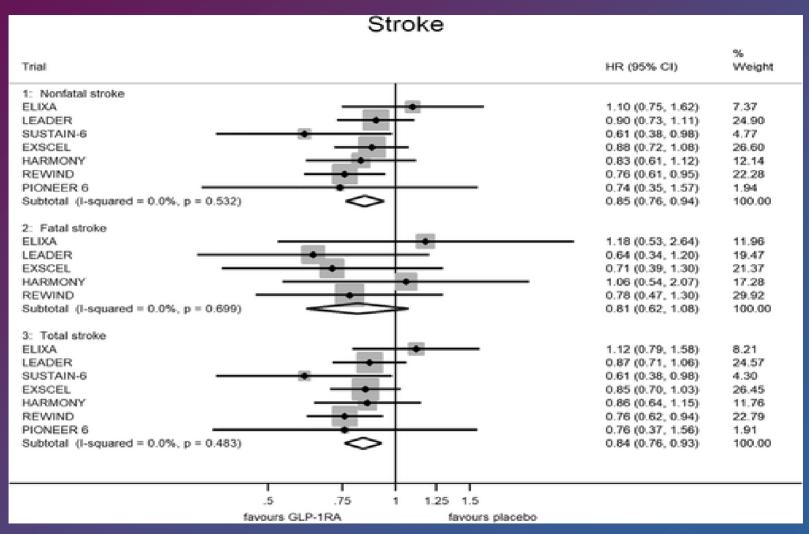
Risk Enhancers

Family hx of early CVD (men <55, women <65) Metabolic syndrome Chronic kidney disease Chronic inflammation (e.g., RA, psoriasis, HIV) Pre-eclampsia or early menopause Ethnicity (e.g. South Asian) hs-CRP ≥2.0mg/dL Lipoprotein (a) \geq 125 nmol/L Apolipoprotein B ≥2.5 mmol/dL

Diabetes Mellitus

Diabetes Mellitus

No ASA*

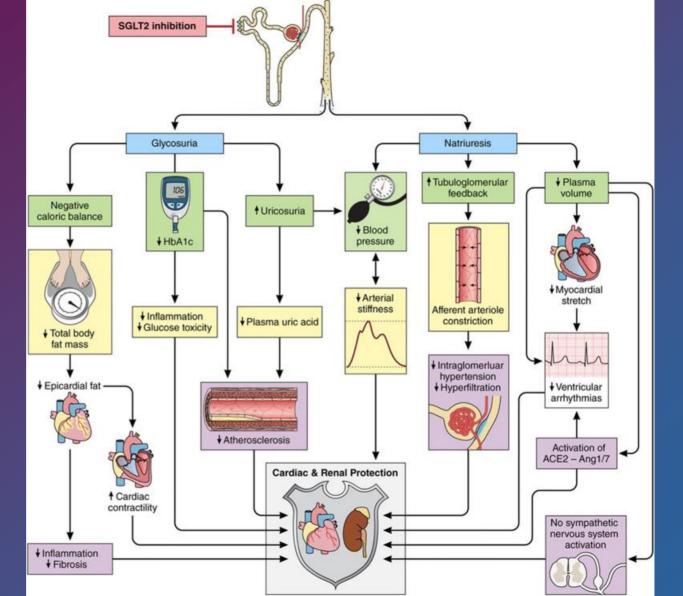

* Unless High Risk from other causes

Diabetes Mellitus

SGLT-2 Inhibitors [CREDENCE] 30% dec in CV death, MI, CVA

GLP- agonists- REWIND. 9901Pts, CVD or CVF 5.4 yrs 25% dec. [3.2 vs 4.1 ie 1% absolute]. [Gluc- dec ut 54% & BP ut 14%]

[NB- 1- Dec sulfonylurea 50%, basal insulin 20%; stop DPP4 if GLP-a 2- DAPA-HF] Glucagon-Like Peptide-1 Receptor Agonists



Glucagon-Like Peptide-1 Receptor Agonists and Prevention of Stroke Systematic Review of Cardiovascular Outcome Trials With Meta-Analysis, Giuseppe Bellastella. Stroke.Volume: 51, Issue: 2, Pages: 666-669

ñ

Diabetes Mellitus: SGLT-2 Inhibitors

Diabetes Mellitus: SGLT-2 Inhibitors

Diabetes Mellitus: SGLT-2 Inhibitors

Beneficial effects of SGLT2 inhibitors on stroke risk factors Hyperglycemia

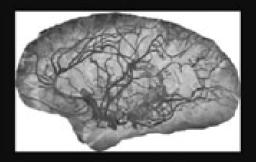
Obesity

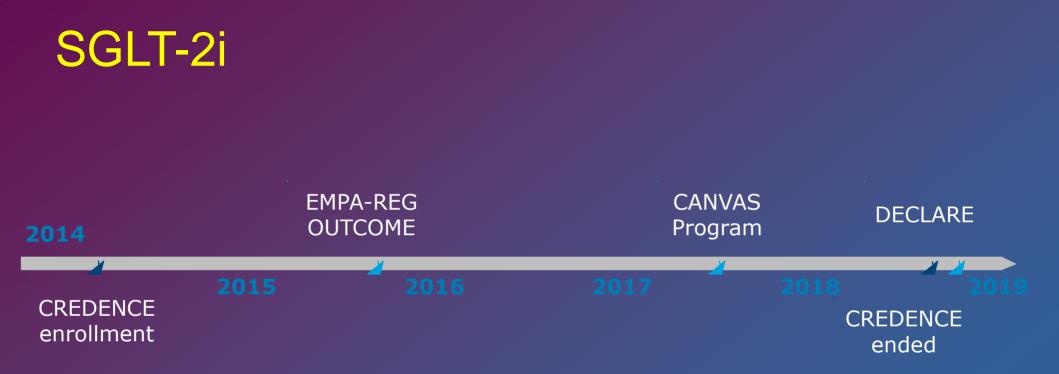
Decreased HDL-C

Increased triglycerides

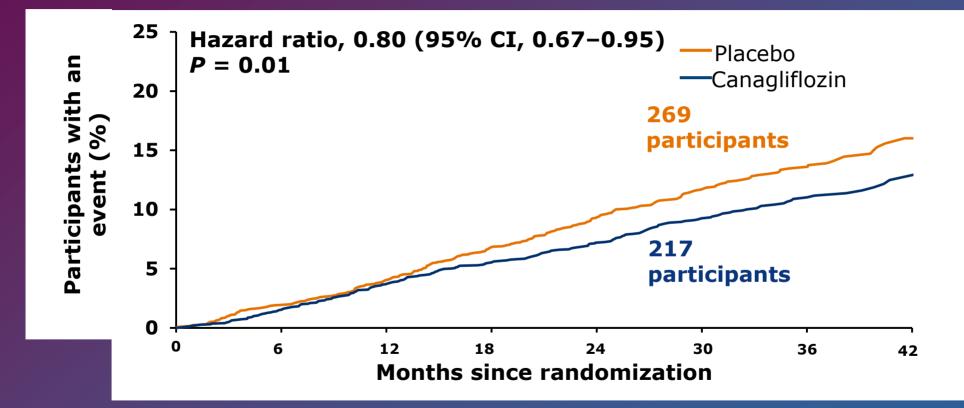
Beneficial effects of SGLT2 inhibitors on structural and functional vascular markers

Oxidative stress


Albuminuria


Arterial stiffness

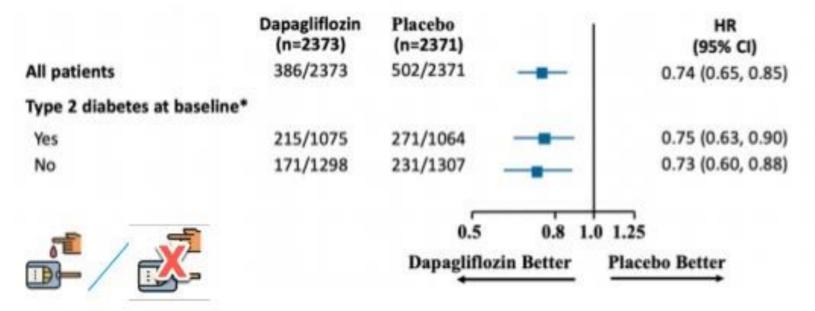
vs


No stroke risk benefits in EMPA-REG

Other factors in play?

CREDENCE: Major Cardiovascular Events: CV Death, MI, or Stroke

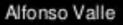
Canagliflozin & Renal Outcomes in Type 2 Diabetes & Nephropathy. N Engl J Med

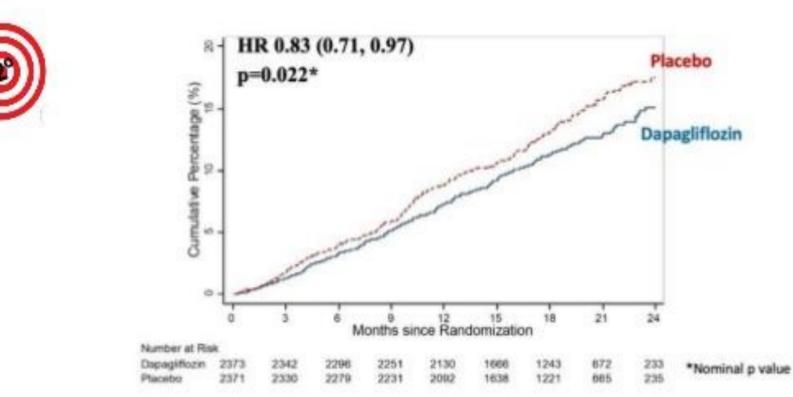

What about non-Diabetics?

Estudio DAPA-HF

CardioTV

Alfonso Valle


No diabetes/diabetes subgroup: Primary endpoint


*Defined as history of type 2 diabetes or HbA1c ≥6.5% at both enrollment and randomization visits.

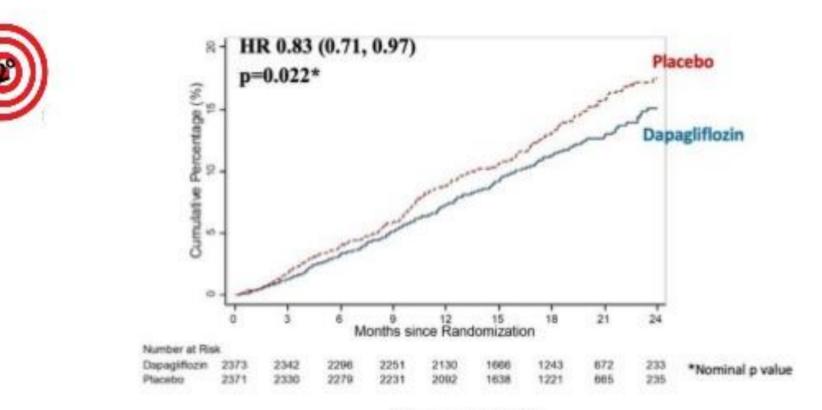
McMarmy presentation ESC 2019

Dapagliflozin in Patients with Heart Failure and Reduced EF. Nov 19. N Engl J Med

All-cause death

Estudio DAPA-HF

CardioTV

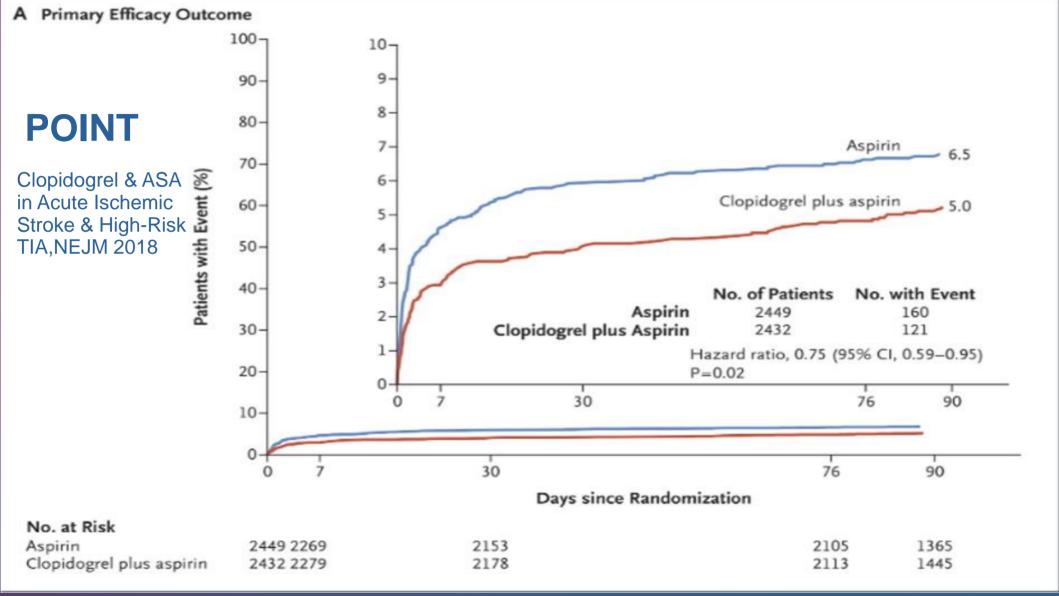

MoMarmy presentation ESC 2019

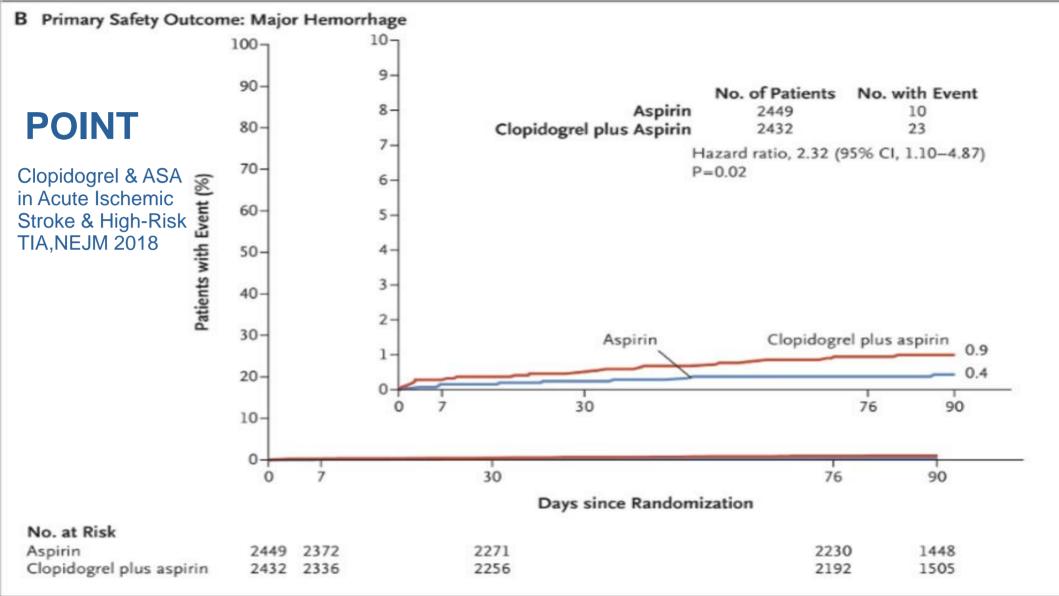
All-cause death

Estudio DAPA-HF

CardioTV

MoMarmy presentation ESC 2019


ASA [1 Prevention]


ASPREE, ASCEND (2018), & ARRIVE (2018)

In healthy, older pts, low-dose aspirin did not reduce death, dementia, nor physical disability. Aspirin was associated with inc'd risk of major hemorrhage.

ASA [2 Prevention]

POINT THALES/THEMIS

The NEW ENGLAND JOURNAL of MEDICINE

Ticagrelor in Stable Coronary Disease and Diabetes

THALES

MULTICENTER, DOUBLE-BLIND, RANDOMIZED, CONTROLLED TRIAL

19,220 Patients with type 2 diabetes and stable coronary artery disease	Ticagrelor 60 mg twice daily + low-dose aspirin 75–150 mg once daily N=9619				
Cardiovascular death, MI, or stroke (median follow-up, 39.9 mo)	7.7% P=0.04 8.5% (N=818)				
TIMI major bleeding	2.2% P<0.001 1.0% (N=206) (N=100)				
Ticagrelor + aspirin decreased ischemic cardiovascular events but increased major bleeding					

P.G. Steg et al. 10.1056/NEJMoa1908077

Copyright © 2019 Massachusetts Medical Society

Interruption of the blood supply 1-Tissue plasminogen activator (tPA) <u>2-Endovascular mechanical embolectomy</u>

Neurorestoration re ischemic cascade->cell death /inflammation 1-SCIL-STROKE (S/C IL-1 Receptor Antagonist in Ischemic Stroke) **Secondary Prevention: Hypertension**

Acute Post CVA Treatment

Lowering BP to <140/90 within 24 hrs of CVA did not dec death nor disability

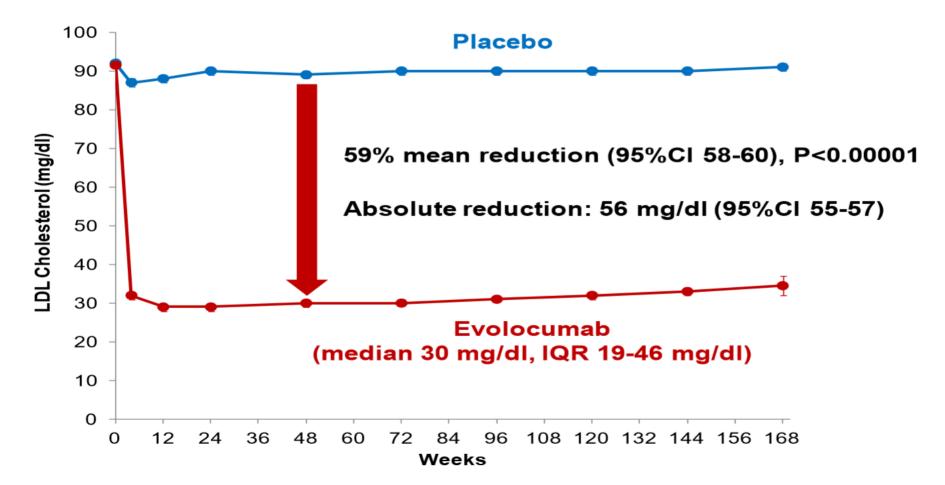
Induced Hypertension in noncardioembolic stroke with Phenylephrine to maintain SBP of 200 improved NHISS score by 2

Cholesterol:

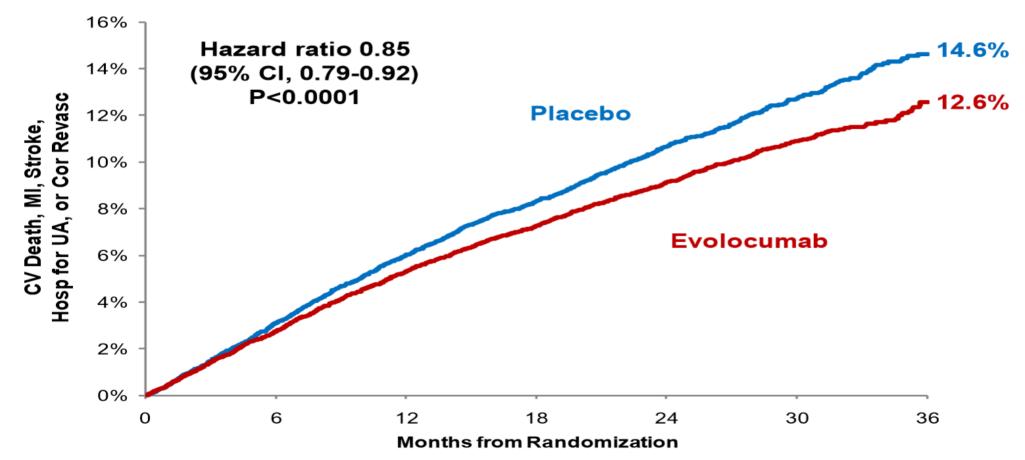
How Low Can you Go?

FOURIER

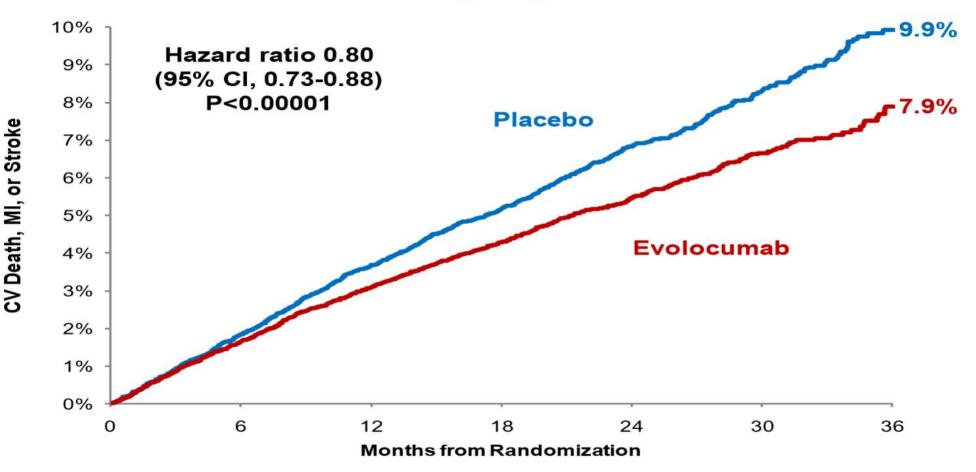
<u>Further cardiovascular OU</u>tcomes <u>Research with PCSK9</u> <u>Inhibition in subjects with Elevated Risk</u> Focus on Cerebrovascular Disease


TR Pedersen*, RP Giugliano, PS Sever, AC Keech, M.S. Murphy, and MS Sabatine,

for the FOURIER Steering Committee & Investigators


* : Oslo University Hospital, Center For Preventive Medicine

LDL-Cholesterol

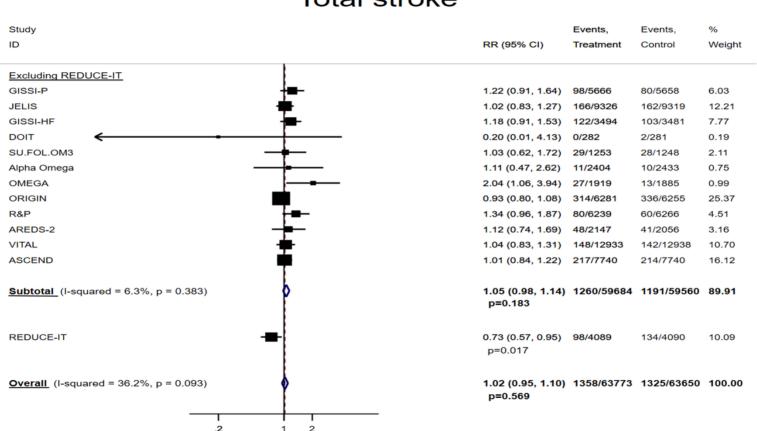


Primary Endpoint Entire Study Population

fourier

Key Secondary Endpoint Entire Study Population

fourier


Types of CV Outcomes

Endpoint	Evolocumab (N=13,784)	Placebo (N=13,780)	HR (95% CI)	
3-yr Kaplan-Meier rate				
CV death, MI, or stroke	7.9	9.9	0.80 (0.73-0.88)	
Cardiovascular death	2.5	2.4	1.05 (0.88-1.25)	
Death due to acute MI	0.26	0.32	0.84 (0.49-1.42)	
Death due to stroke	0.29	0.30	0.94 (0.58-1.54)	
Other CV death	1.9	1.8	1.10 (0.90-1.35)	
MI	4.4	6.3	0.73 (0.65-0.82)	
Stroke	2.2	2.6	0.79 (0.66-0.95)	

Marine Omega-3 Supplementation and Cardiovascular Disease

Marine Omega-3 Supplementation and Cardiovascular Disease: An Updated Meta-Analysis of 13 Randomized Controlled Trials 30 Sep 2019

Total stroke

Yang Hu. Journal of the American Heart Association. Marine Omega-3 Supplementation and Cardiovascular Disease: Involving 127,477 Participants, Volume: 8, Issue: 19,

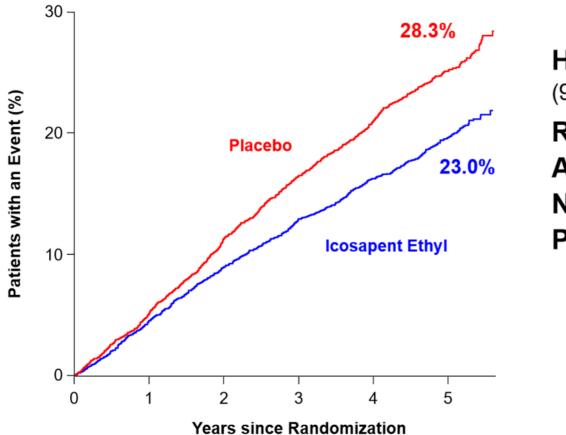
Reduction in Total Ischemic Events in the Reduction of Cardiovascular Events with Icosapent Ethyl–Intervention Trial

Deepak L. Bhatt, MD, MPH, Ph. Gabriel Steg, MD, Michael Miller, MD,

Eliot A. Brinton, MD, Terry A. Jacobson, MD, Steven B. Ketchum, PhD,

Ralph T. Doyle, Jr., BA, Rebecca A. Juliano, PhD, Lixia Jiao, PhD,

Craig Granowitz, MD, PhD, Jean-Claude Tardif, MD, John Gregson, PhD,

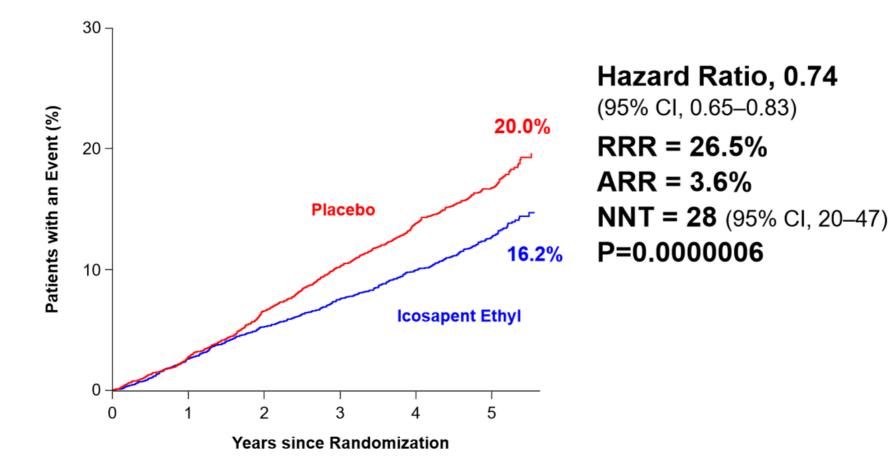


Stuart J. Pocock, PhD, Christie M. Ballantyne, MD, on Behalf of the

X

REDUCE-IT Investigators

Primary End Point: CV Death, MI, Stroke, Coronary Revasc, Unstable Angina


Hazard Ratio, 0.75 (95% Cl, 0.68–0.83) RRR = 24.8% ARR = 4.8% NNT = 21 (95% Cl, 15–33) P=0.0000001

Yeduce-it

Bhatt DL, Steg PG, Miller M, et al. N Engl J Med. 2018. Bhatt DL. AHA 2018, Chicago.

Key Secondary End Point: CV Death, MI, Stroke

Bhatt DL, Steg PG, Miller M, et al. N Engl J Med. 2018. Bhatt DL. AHA 2018, Chicago.

Prespecified Hierarchical Testing

Endpoint	Hazard Rat (95% Cl)		Placebo n/N (%)	Hazard Ratio (95% CI)	RRR	P-value
Primary Composite (ITT)	-=-	705/4089 (17.2%)	901/4090 (22.0%)	0.75 (0.68–0.83)	25%▼	<0.001
Key Secondary Composite (ITT)		459/4089 (11.2%)	606/4090 (14.8%)	0.74 (0.65–0.83)	26%▼	<0.001
Cardiovascular Death or Nonfatal Myocardial Infarction		392/4089 (9.6%)	507/4090 (12.4%)	0.75 (0.66–0.86)	25%▼	<0.001
Fatal or Nonfatal Myocardial Infarction		250/4089 (6.1%)	355/4090 (8.7%)	0.69 (0.58–0.81)	31%▼	<0.001
Urgent or Emergent Revascularization		216/4089 (5.3%)	321/4090 (7.8%)	0.65 (0.55–0.78)	35%▼	<0.001
Cardiovascular Death		174/4089 (4.3%)	213/4090 (5.2%)	0.80 (0.66–0.98)	20%▼	0.03
Hospitalization for Unstable Angina	_ _	108/4089 (2.6%)	157/4090 (3.8%)	0.68 (0.53–0.87)	32%▼	0.002
Fatal or Nonfatal Stroke		98/4089 (2.4%)	134/4090 (3.3%)	0.72 (0.55–0.93)	28%▼	0.01
Total Mortality, Nonfatal Myocardial Infarction, or Nonfatal Stroke		549/4089 (13.4%)	690/4090 (16.9%)	0.77 (0.69–0.86)	23%▼	<0.001
Total Mortality		274/4089 (6.7%)	310/4090 (7.6%)	0.87 (0.74–1.02)	13%▼	0.09
	0.4 1.0	1.4		RRR denotes rel	lative risk	reduction
Bhatt DL. AHA 2018, Chicago. ^{Icosape}	Placebo Better	Bhatt DL, Steg PG, Miller M, et al. <i>N Engl J Med.</i> 2018				

ANYTHING ELSE?

Efficacy & Safety of Low-Dose Colchicine after MI

MI < 30 dys, any PCI procedures completed, & optimally treated including intensive statins

Jean-Claude Tardif et al; N Engl J Med; December 26, 2019 381:2497-2505

Table 2. Major Clinical End Points (Intention-to-Treat Population).*							
End Point	Colchicine (N = 2366)	Placebo (N = 2379)	Hazard Ratio (95% CI)	P Value			
	number (percent)					
Primary composite end point	131 (5.5)	170 (7.1)	0.77 (0.61-0.96)	0.02†			
Components of primary end point							
Death from cardiovascular causes	20 (0.8)	24 (1.0)	0.84 (0.46-1.52)				
Resuscitated cardiac arrest	5 (0.2)	6 (0.3)	0.83 (0.25–2.73)				
Myocardial infarction	89 (3.8)	98 (4.1)	0.91 (0.68–1.21)				
Stroke	5 (0.2)	19 (0.8)	0.26 (0.10-0.70)				
Urgent hospitalization for angina lead- ing to revascularization	25 (1.1)	50 (2.1)	0.50 (0.31-0.81)				
Secondary composite end point‡	111 (4.7)	130 (5.5)	0.85 (0.66–1.10)				
Death	43 (1.8)	44 (1.8)	0.98 (0.64–1.49)				
Deep venous thrombosis or pulmonary embolus	10 (0.4)	7 (0.3)	1.43 (0.54–3.75)				
Atrial fibrillation	36 (1.5)	40 (1.7)	0.93 (0.59–1.46)				

* Only the initial event was counted in the analyses of time to first event for the primary composite end point and for the secondary composite end point. In the component analysis, the different types of events were counted separately.

† The log-rank test and the multivariable Cox proportional-hazards model including age, history of diabetes, previous coronary revascularization, and previous heart failure yielded similar P values.

The secondary composite end point included death from cardiovascular causes, resuscitated cardiac arrest, myocardial infarction, and stroke.

Vitamin C: Prevention atrial fibrillation in high risk patients: systematic review & meta-analysis

	Vitam	n C	Cont	rol		Risk Ratio	Risk Ratio	
Study or Subgroup		Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% Cl	
1.1.1 POAF trials in t	the USA							
Healy 2010	5	19	7		2.5%			
Colby 2011	4	13	5	11	1.5%	0.68 [0.24, 1.92]		
Bjordahl 2012	27	89	29					
van Wagoner 2003	44	177	41	169				
Donovan 2012	58	150		154		1.24 [0.91, 1.69]		
Subtotal (95% CI)		448		441	36.9%	1.04 [0.86, 1.27]	•	
Total events	138		130					
	Heterogeneity: $Chi^2 = 6.20$, $df = 4$ (P = 0.18); $l^2 = 35\%$							
Test for overall effect: 2	Test for overall effect: Z = 0.41 (P = 0.68)							
1.1.2 POAF trials Gre	ece. Rus	sla. Sl	ovenia					
Rebrova 2012	1	20	4	20	1.1%	0.25 [0.03, 2.05]	• · · · · · · · · · · · · · · · · · · ·	
Antonic 2016	7	52						
Papoulidis 2011	38	85	52					
Polymeropoulos 2015	4	11	5	11		0.80 [0.29, 2.21]		
Subtotal (95% CI)		168		169				
Total events	50		71					
Heterogeneity: Chi ² = 1	1.05, df =	3 (P =	0.79); l ² =	= 0%				
Test for overall effect:	Z = 2.52 (P = 0.0	1)					
for an area ple exemption on the								
1.1.3 POAF trials in I	ran							
Eslami 2007	2	50	13	50	3.6%	0.15 [0.04, 0.65]	·	
Dehghani 2014	4	50	16					
Samadikhah 2014	6	60	15					
Sarzaeem 2014	11	85	25					
Sadeghpour 2015	40	113	99	177				
Subtotal (95% CI)		358		422	41.0%	0.49 [0.39, 0.62]	-	
Total events	63		168					
Heterogeneity: Chi ² = 1				= 48%				
Test for overall effect: Z = 5.82 (P < 0.00001)								
1.1.4 AF recurrence after a successful cardioversion								
Korantzopoulos 2005	1	22	8	22	2.2%	0.13 [0.02, 0.92]	←	
Subtotal (95% CI)		22		22				
Total events	1		8					
Heterogeneity: Not app	licable							
Test for overall effect:	Z = 2.04 (P = 0.0	4)					
Total (95% CI)		996		1054	100.0%	0.73 [0.64, 0.83]	●	
Total events	252		377					
Heterogeneity: Chi ² = 3				$); ^2 = 0$	51%		0.1 0.2 0.5 1 2 5 10	
Test for overall effect:							Favours vitamin C Favours control	
Test for subgroup diffe	rences: Cl	ıı² = 25	.8/,011 =	3 (P <	0.0001), P	4 = 88.4%		

Two g vitamin C was given before CV & afterwards 1 g/day of vitamin C for 7 days. After a successful CV, participants were followed for 7 days

References

1. ARRIVE: Lancet Vol 392, ISSUE 10152, P1036-1046, Sept 22, 2018 2. ASCEND: N Engl J Med. 2018 Oct 18;379(16):1529-1539 3. ASPREE: October 18, 2018N Engl J Med 2018; 379:1509-1518

4. Cardiovascular risk factors for acute stroke: World J Clin Cases. 2015 May 16; 3(5): 418–429.

5. INTERSTROKE study (O'Donnell et al. 2010, O'Donnell et al. 2016)

6. Immediate Antihypertensive Treatment for Patients With Acute Ischemic Stroke With or Without History of Hypertension: A Secondary Analysis of the CATIS Randomized Clinical Trial. JAMA . 2019 Jul 3;2(7)

7. Therapeutic-induced hypertension in patients with non-cardioembolic acute CVA Neurology November 19, 2019; 93 (21)

8. Hypertension and Stroke: Update on Treatment Eur Cardiol. 2019 Jul 11;14(2):111-115.
 9. Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): a double-blind, randomised placebo-controlled trial. Lancet. 2019 Jul 13;394(10193):121-130.

10. Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy N Engl J Med June 13, 2019; 380:2295-2306 [CREDENCE]

11. DAPA-HF Dapagliflozin in Patients with Heart Failure and Reduced EF. N Engl J Med 2019; 381:1995-2008

References

- 12. SCIL-STROKE (S/C IL-1 Receptor Antagonist in Ischemic Stroke) Smith CJ. et al. : Stroke. 2018
- 13. Marine Omega-3 Supplementation and Cardiovascular Disease: An Updated
 Meta- Analysis Yang Hu et al Journal of the American Heart Association 30 Sep
 2019.
- 14. Effect of High-Dose Marine Omega-3 Fatty Acids on Atherosclerosis: A Systematic Review & Meta-Analysis of Randomized Clinical Trials Nutrients 11(11), 2599, 2019
- Glucagon-Like Peptide-1 Receptor Agonists and Prevention of Stroke Systematic Review of Cardiovascular Outcome Trials With Meta-Analysis, Giuseppe Bellastella. Stroke.Volume: 51, Issue: 2, Pages: 666-669
- 16. Efficacy and Safety of Low-Dose Colchicine after Myocardial Infarction Jean-Claude Tardif et al; N Engl J Med; December 26, 2019 381: 2497-2505
- 17. Clopidogrel & Aspirin in Acute Ischemic Stroke & High-Risk TIA, S. Claiborne Johnston et al, N Engl J Med 2018; 379:215-225