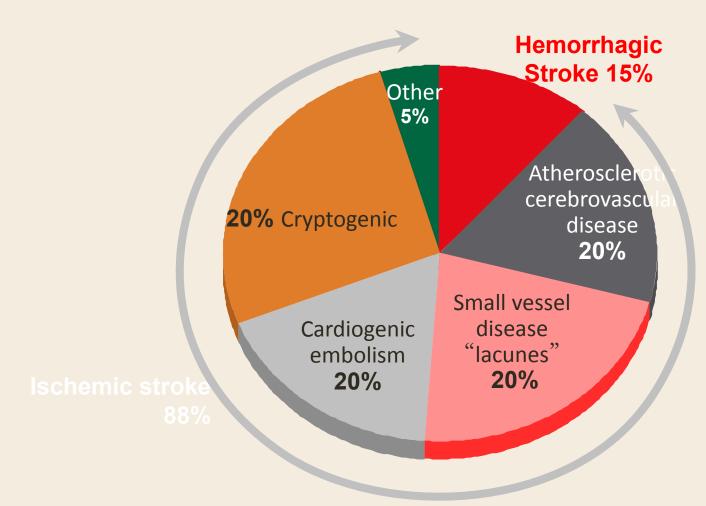
TIA/Mild Stroke Management

David Howse MD FRCPC
Southeastern Ontario Stroke Symposium
November 2016

Epidemiology - Canada

- Estimate
 - 70,000 adults have ischemic stroke annually
 - 300,000 Stroke survivors
 - Great variations in morbidity
- Additional 24,000 have TIA
- Of patients with TIA and mild stroke a significant percentage go onto have a stroke with functional disability.

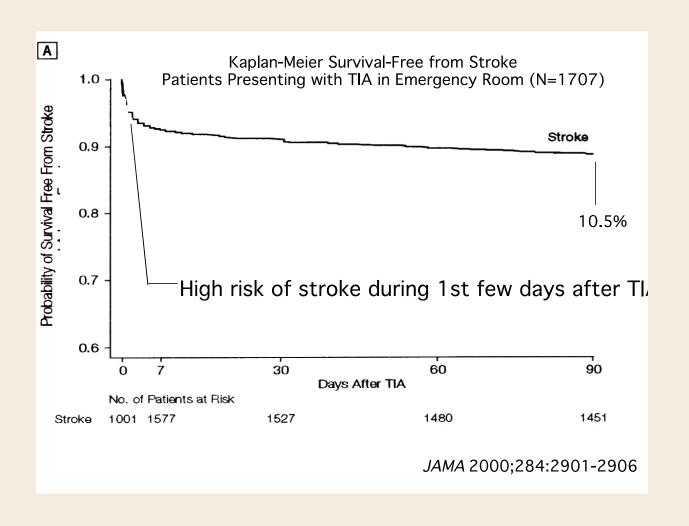
- Old definition
 - TIA Sx for < 24 hours
 - Stroke Sx for > 24 hours
- MR imaging
 - Sx can last for < 1 hour with definite infarct
 - 30% sx < 24 hrs have infarct
 - Sx can last for > 24 hrs with no residual infarct
 - Can have no Sx and have infarct
- Pathophysiological mechanism the same
- No real difference Treat the same
- Recommendations apply to TIA/minor stroke equally


What is the Difference Between a Mild Stroke and a TIA?

- Transient Ischemic Attack
 - Traditional Focal deficit clearing clinically within 24 hours
 - BUT MRI imaging shows
 - A third of patients with symptoms clearing < 24 hrs have infarction
 - Many patients with symptoms clearing > 24 hour do not have infarction
- Current Definition
 - TIA: Focal neurological deficit without imaging evidence of infarction
- Stroke:
 - Focal neurological deficit with evidence of infarction (MRI, clinical, pathological)
- Distinction is artificial They share pathophysiological mechanisms and prognosis

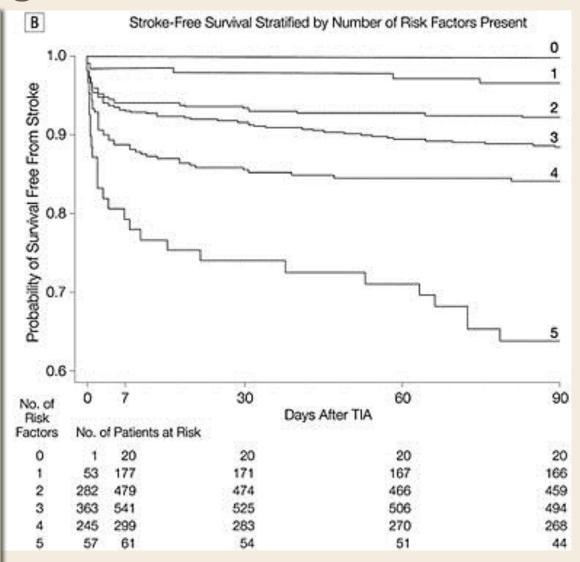
Ischemic Stroke - Subtypes

- 1. Large vessel atherothrombotic (extracranial or intracranial)
- 2. Cardioembolic
- 3. Small vessel disease
- 4. Other known causes (dissection, patent foramen, vasculitis, hypercoagulable state,)
- 5. Cryptogenic
- 6. Silent Infarction

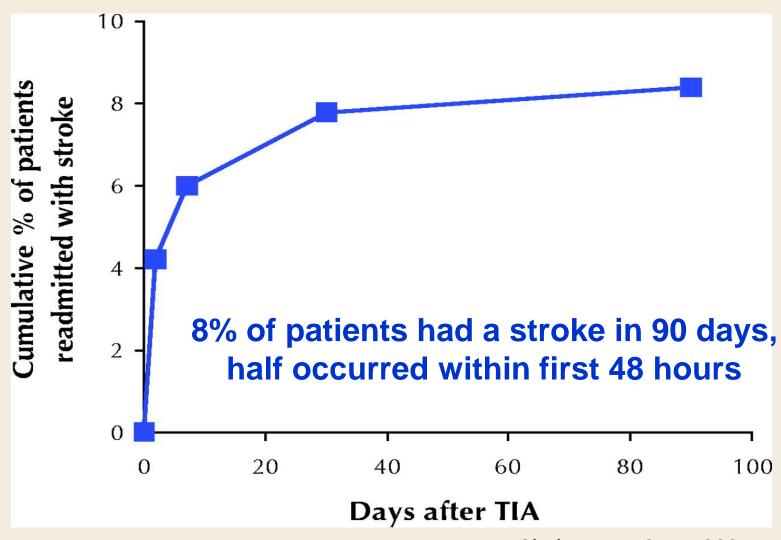

Stroke Types & Incidence

Stroke Mimics

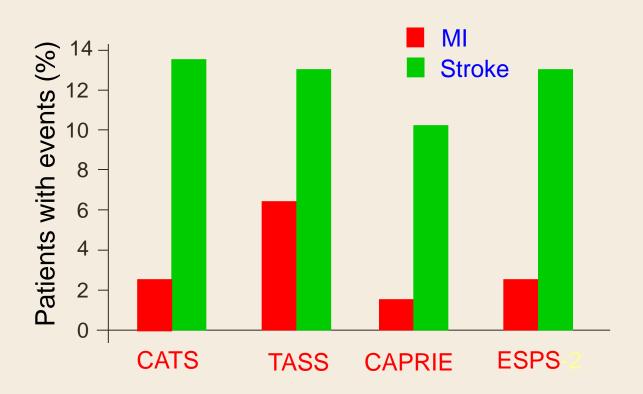
- Migraine aura
- Epilepsy focal seizures with postictal weakness
- Preexisting conditions causing weakness or deficit + acute systemic illness
- Hypoglycemia
- Tumour
- Subdural
- Behavioural


Stroke Risk Following TIA Seen in ER in 2000

Plot of Survival Free State for 90 Days Following ER Visit for TIA – Risk Factors


Risk factors

- 1. Age > 60
- 2. Diabetes
- 3. Sx > 10 minutes
- 4. Weakness
- 5. Speech


Ontario Demonstration Sites -

Time to Stroke after TIA

Gladstone D CMAJ 2004

Risk of Vascular Events After Stroke or TIA

CATS = Canadian American Ticlopidine Study
TASS = Ticlopidine Aspirin Stroke Study
CAPRIE = Clopidogrel versus Aspirin in
Patients at Risk of Ischaemic Events
ESPS-2 = European Stroke Prevention Study 2

Hypertension

- THE MOST IMPORTANT RISK FACTOR FOR ISCHEMIC STROKE
- THE MOST IMPORTANT INTERVENTION
- Present in 70% of ischemic stroke
- Use conventional definition 140/90
- However:
 - Population studies assign increasing risk of primary stroke (and presumably recurrent stroke) beginning at SBP 115-120

Blood Pressure Management Following TIA/Minor Stroke

- First 24/48 hours no intervention
 - Unless BP > 220 mm Hg intervention (e.g. with IV labetalol)
 - Target BP 185 systolic
 - No benefit in treating elevated BP in setting of acute stroke
 - Aggressive hypotensive treatment can be harmful (perfusion)
 - Follow
- After 24 -48 hours
 - Initiate or reintroduce antihypertensive therapy if established BP>140 and diastolic >90 mm Hg
- How low Recommended Target AHA 140/90
 - For lacunar infarct target SBP 130 vs 150
 - DM no benefit lowering BP <120 vs <140
- No evidence of a J curve
- Choice of drugs ? Diuretic + ACE

PROGRESS Trial – Perindopril +/- Indipamide following Stroke

Initial SBP	Decrease in SBP mmHg	RRR Stroke
>160	11.1	39%
140-159	9.2	31%
120-139	7.6	14%
<119	7.4	0%

Dyslipidemia and Stroke

- Elevated LDL-C associated with increased risk of thrombotic stroke
- Statin use reduced ischemic stroke risk in cardiovascular trials
- BUT Low LDL-C => increased risk of ICH (inconclusive)
- Aggressive statin use may stabilize stenosis & reduce intra-plaque hemorrhage - Unstable stenosis
- Some evidence of plaque regression with high dose

Dyslipidemia – SPARCL Trial

- Secondary Stroke Prevention
 - Following TIA/Mild stroke
 - Subjects LDL 2.6 -4.9
 - No cardiac disease
 - 80 mg atorvastatin 4.9 yrs
- SPARCL Trial Results:
 - 23% reduction in TIA/ischemic stroke over 5 years
 - 33% Reduction in major cardiovascular events
 - No particular target for LDL
 - For those with >50% reduction in LDL levels 35% reduction in combined risk of fatal and non fatal stroke
 - Small (1%) increase in hemorrhagic stroke
 - All subgroups benefited

Dyslipidemia

- SPARCL –Additional considerations
 - Benefits probably underestimated
 - 22% placebo patients switched to a statin
 - Drug started up to 6 months post TIA/stroke
- Other lipid indices associated with risk of thrombotic stroke
 - Elevated Triglycerides
 - Low HDL
 - Elevated lipoprotein a
- No proof of benefit in non statin treatment
 - (e.g. Niacin + anti flushing agent, fibrates)
- Statin therapy is associated with plaque stabilization
- RECOMMENDATIONS:
 - Early statin use with intensive lipid lowering effects and LDL-C>2.5
 - If statin intolerant alternative –eg fibrates
 - Lifestyle modification
 - Dietary recommendations

Large Artery Atherosclerosis

Symptomatic Extracranial Carotid Disease

- Carotid Greater than 70% stenosis
 - Carotid endarterectomy + medical therapy for symptomatic patients with high grade stenosis
 - 30 day stroke in death rate 7.1% (currently 6%)
 - Timing within two weeks benefit falls off after 2 weeks
- 50-69% stenosis
 - Recurrent stroke
 - Medical 22.2%
 - Surgical 15.7%
- Gender issues females higher risk of unfavorable outcome
- BUT medical therapy has improved and
- Surgical therapy has improved
- Carotid Artery Stenting Equivalent benefit

Large Artery Atherosclerosis Intracranial Stenosis

- High Risk of recurrent stroke esp if >70% stenosis
- Trials of
 - EC-IC bypass
 - Angioplasty and stenting
- Uniformly negative Trials ongoing
- Aggressive Medical Therapy
 - ASA+Clopidogrel x 3 months
 - High intensity statin
 - BP <140 mmHg

Large Artery Atherosclerosis Vertebrobasilar Disease

- Interventions-
 - Angioplasty/Stenting
 - Open Revascularization
- Limited trial data
 - Low periproceduaral complication rate
 - No proof of efficacy
- Recommendation of ASA:
 - Aggressive medical therapy
 - Interventions justified if medical therapy fails

Stroke and Disorders of Glucose Metabolism

- Diabetes
 - DM Type 1
 - Prediabetes
 - Diabetes type 2
 - Prediabetes defined by HbA1c
- Patients with Diabetes
 - increased risk of stroke (1.5-3.7X)
 - Increased stroke severity
 - Increased risk of recurrence (60%)
- Patients with Stroke
 - 28% have prediabetes
 - 25-45% have overt diabetes

Stroke and Disorders of Glucose Metabolism

- No direct studies of secondary stroke prevention by interventions for improved glucose metabolism
- More intensive glycemic control (ie, HbA1c <6% or <6.5%) may be modestly effective for preventing nonfatal CHD events, particularly MI, compared with current targets (ie, HbA1c <7%–8%)

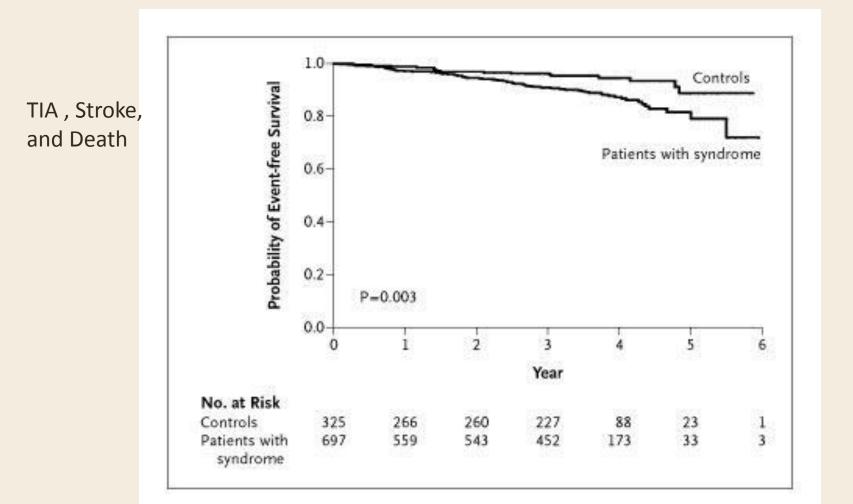
RECOMMENDATION

- All patients TIA/minor stroke should be screened for DM
 - Fasting glucose
 - HbA1c
- Follow ADA guidelines for glycemic control
- Unclear the long term benefit of improved glycemic control for stroke prevention

Role of Diabetes Medications

- Pioglitazone therapy (PROactive)
 - 47% RR reduction in recurrent stroke (HR, 0.53; 95% CI, 0.34–0.85) and a 28% RR
 - 28% Reduction in stroke, MI, or vascular death

(Also metformin & linagliptin)


Obstructive Sleep Apnea (OSA)

- AHI (Apnea Hypopnea Index)
 - Cessation in breathing > 10 sec
 - Associated with decrease in blood oxygen
- Normal <4/hr
- Moderate-severe SDB (AHI >20/hr) independent risk factor for first ever stroke in four years
- Severe SDB independent risk factor for fatal and non fatal cardiovascular events

Effects of OSA

- Diabetes
- Accelerates microangiopathic change
- Vascular reactivity impaired
- Associated with impaired cognition
- Associated with refractory hypertension
- Standard physical features absent
 - BMI inaccurate for predicting OSA
 - Thick neck
 - Sleepiness
 - Questionnaires
- Increased risk of:
 - Cerebral infarctions
 - Cardiovascular disease

Figure 1. Kaplan–Meier Estimates of the Probability of Event-free Survival among Patients with the Obstructive Sleep Apnea Syndrome and Controls

OSA Severity Causing Stroke/Death

3 Year Follow-up

Severity	Stroke or Death	# Patients	Hazard Ratio
AHI <4	13	271	1.00
AHI 4-12	21	258	1.75
AHI 13-36	20	243	1.74
AHI >36	34	250	3.30

Trend Analysis: Relationship Between OSA Severity and Outcome – Stroke/Death

Sleep Apnea in Acute Stroke

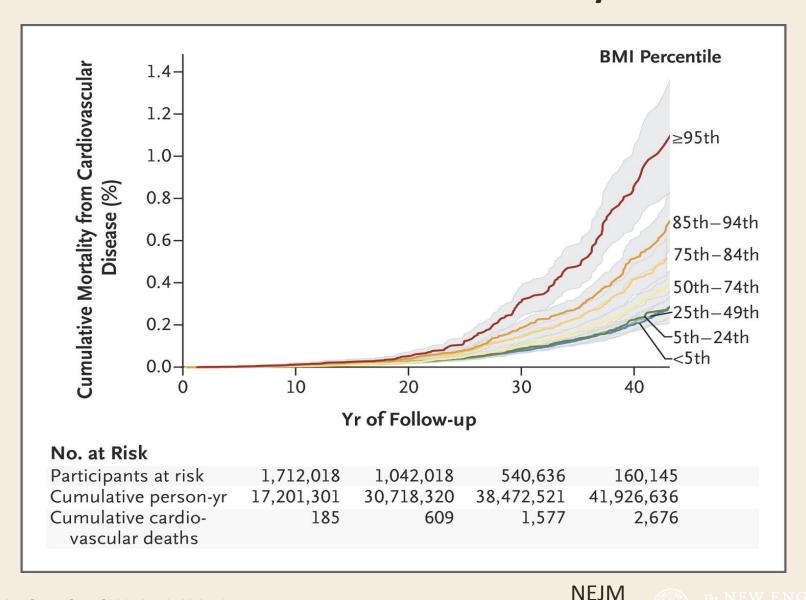
- Apnea Hypoxia Index (AHI)
- Meta-analysis of 2343 Stroke pts
 - 72% sleep apnea (>4 events/hr)
 - 38% > 20 events/hr
 - 93% OSA 7% central
- OSA 4% in general population

OSA in the Post Stroke Patient

Associated with poorer outcomes

- Higher Mortality
- Delirium
- Reduced motivation,
- Decreased cognitive capacity
- Worse functional impairment
- Longer Rehabilitation
- Longer hospital stays
- Increase the risk of recurrent stroke and death
- DOES CPAP IMPROVE OUTCOME???

Am J Resp CC Med 2009; 180:36 Arch Int Med 2008; 297-301


Obesity

- Long recognized as risk factor for stroke
- Risk of ischemic stroke increases in a near- linear fashion starting at a BMI of 20 kg/m2
- 1 kg/m2 is associated with 5% increase in stroke risk
- Probably via intermediary of increased risk factors
- Obesity paradox
- No quality trials to evaluate weight loss as a specific treatment for stroke prevention
- One trial of bariatric surgery: (SOS) (Primary prevention)
 - Stroke reduced 34% (p=0.008)
 - MI reduced 29%
- No secondary prevention trials

Adolescent BMI and Stroke Risk

- Israeli population study all 17 year olds
- Followed for 40 years
- Of 32,127 deaths
 - 2918 (9.1%) were from cardiovascular causes
 - 1497 from coronary heart disease, 893 from sudden death
 - 528 from stroke

Mass Index (BMI) during Adolescence and Subsequent Cardiovascular Mortality.

Nutrition

- Recommend a Mediterranean type diet rather than a low fat diet
 - Vegetables, fruits, whole grains and low fat dairy products, poultry, fish
 - Limit red meats, sweets,
 - Low salt
- Supplementation with various vitamins not recommended (possibly folic acid)

Atrial Fibrillation

- Common increasing with age
 - <0.1% under age of 50
 - 10% Over age of 80
- Risk for stroke following TIA/Stroke without risk factors 7-10%/yr
- 72% on AC by CHADS2
- 90% require AC by CHA2DS2
- Following TIA Stroke All patientd without contraindications
- Primary Prevention
 - AC recommended for ALL NVAF patients except:
 - 0 score reasonable for No AC
 - 1 consider AC
 - = and >2 Recommend NOAC, then warfarin, then antiplatelets
- CHADS2 not particularly reliable for short term

Atrial Fibrillation

- The risk of recurrence of AF related strong is as high and this
 8% he the first two weeks
- Early Initiation of treatment within 1 to 2 days.
- If large infarction, hemorrhagic transformation, or other bleeding risk factors (HAS-BLED) may delay
- But with a TIA/ minor stroke reasonable to initiate within 24 to 48 hours
- Suspect Cardioembolic
 - Large vessel occlusion.
 - Wedge shaped cortical infarct
 - No other obvious explanation

CHADS Score and Stroke Risk

	Point s	Tota I Poin ts	Annual Stroke Risk
Congestive Heart Failure - History	+1	0	1.9%
Hypertension	+1	1	2.8%
Age >65-75 yrs	+1	2	4.0%
Diabetes	+1	3	5.9%
Stroke/TIA/Throm boemboli	+2	4	8.5%
		5	12.5%
		6	18.2%

CHA2DS2 - Vasc Score and Stroke Risk

Risk Factors	Points	Total Points	Annual Stroke Risk
Congestive Heart Failure - History	+1	0	0
Hypertension	+1	1	1.3%
Age >65-75 yrs	+1	2	2.2%
Age >75	2	3	3.2%
Diabetes	+1	4	4.0%
Stroke/TIA/Thromboem boli	+2	5	6.7
Vascular Disease	1	6	9.8%
Female Sex	1	7	9.6%
		8	6.7%
		9	15.2%

Occult AF – Following TIA/Stroke

- 10% patients will have new AF detected during hospital admission
- Additional 11% if monitored for 2-4 weeks
- Occult AF detected during routine monitoring for cardiological conditions have an increased incidence of strokes
- What is the accepted AF activity?
 - One run of 30 sec???

Non Pharmacological Approaches

- Non-Pharmacological approaches
- Various devices have been trialed to occlude the left atrial appendage, or other means to terminate AF.
- In view on the efficacy and safety of the oral anticoagulants and the long term efficacy of these devices use is limited.
- Mechanical valves NO
- Moderate/severe MS no

New Oral Anticoagulants

- Dabigatran
 - 150 mg and 110 mg
- Rivaroxaban
 - 15 and 20 mg
- Apixaban
 - 5 mg

Other Ischemic Stroke Mechanisms

- Cardiac
 - E.g. Cardiomyopathy
 - Patent FO
 - Valvular heart disease
 - Prosthetic heart valves
 - ASA /warfarin usually

Other:

e.g. Dissection

Vasculitis

Prothombotic conditions

Inherited thrombophilias

HAS-BLED - Risk of bleeding with AF

Condition	Points
Hypertension >160 mmHg	1
Abnormal - Liver Function Renal/Function	1 1
Stroke/TIA	1
Bleeding Predisposition	1
Labile INR	1
Elderly >65	1
Drug predisposing medications Drug/Alcohol abuse	1
	1
Total Possible	9

Antithrombotic therapy

- ASA and Clopidogrel
- Either/or but not both
- MATCH trial slight benefit of decreased ischemic strokes balanced by increased hemorrhagic strokes
- Prior use of antithrombotics decreases stroke severity (Smith Stroke 2016 >500,000 pts)
- Rarely used
 - Ticlopidine
 - Aggrenox

Dual Antiplatelet Therapy Following TIA/Minor Stroke

- ASA 81 mg + Plavix 75 mg
- Meta-analysis 10 trials (8969 pts)
- Significant reduction of recurrent stroke
- RRR = .65
- p = > 0.00001
- No significant subgroups
- Similar risk of intracranial hemorrhage

Yang Lui J Neurol; ePub Aug 2016

Cigarette Smoking

- Important independent risk factor for first ischemic stroke
- Increased risk of silent infarction
- Two fold increase in risk of recurrence of stroke.
- Now evidence of "Secondhand smoke" increased risk
- No direct evidence cessation is beneficial but much indirect
- Smoking Cessation a priority
- References 30, 53 316

Alcohol Consumption

- Increased stroke risk ischemic/hemorrhagic Heavy alcohol use,
 - Binge drinking
 - Acute alcohol ingestion
- Protective effect for ischemic stroke for light to moderate consumption (J shaped curve)
 - ~ two drinks per day/ males
 - ~ one drink per day/females
- Hemorrhagic stroke- greater risk with increased use linear

Thanks For Your Attention